Lecture 8
Plan:

- Faces of polyhedra
- State tons of facts
- Prove them

Faces of Polyhedra
Def: $a^{(1)} \ldots a^{(k)} \in \mathbb{R}^{n}$ are
affinely independent if

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)}=0
$$

and $\sum \lambda_{i}=0$ imply $\lambda_{1}=\ldots=\lambda_{k}=0$.
(clout $\varepsilon \lambda_{i}=0$, is just linear ind.)
linearindppendeme \Rightarrow afffun independ.
Note: $\operatorname{aff}(x)=$ lowest dim. affine S cist D. . op ace containing X.

La 'Jappiney minnow
$\left\{\left[\begin{array}{c}a^{(i)} \\ 1\end{array}\right]\right\}$ linearly independent.
$\Leftrightarrow \operatorname{aff}\left(\left\{a^{(i)}\right]\right)$ has dimension $k-1$

Def Dimension $\operatorname{dim}(P)$ of polyhedron P :
$-1+$ max $\#$ affinely
independent points in P.
Equivalent, dimension of affine hull off (P).
Examples: $p=\phi, \operatorname{dim}(p)=-1$

$$
\begin{aligned}
& P=\text { singleton } \quad \operatorname{dim}(p)=0 \\
& P=\text { line segment } \quad \operatorname{dim}(p)=1
\end{aligned}
$$

$$
a f f(P)=\mathbb{R}^{n} \quad \operatorname{dim}(P)=n ;
$$ dimensional

es. cube in $\mathbb{R}^{3}:\left\{x: 0 \leq x_{i} \leq 1\right\}$

$$
\begin{aligned}
& \operatorname{dim} P=3 \\
& \operatorname{dim} \mathbb{R}^{3}=3
\end{aligned}
$$

as polyhedron).
Wy affine, not linear? affine independence is translation invariant:
it I used max \# lin indep pants -1

$$
\begin{aligned}
& \text { \# lin indepppans }-1 \\
& \operatorname{dim}(p)=1 \quad \\
& \operatorname{dim}\left(p^{\prime}\right)=0
\end{aligned}
$$

\leadsto

$$
1=\operatorname{dim}(p)=\operatorname{dim}\left(p^{\prime}\right)
$$

Def: $\alpha^{\top} x \leq \beta$ is a valid inequality for P if $a^{\top} x \leq \beta$ or all $x \in P$.

or

Def A face of a polyhedron P is $\left\{x \in P: \alpha^{\top} x=\beta\right\}$ for
$\alpha^{\top} x \leq \beta$ valid.

Faces:

Properties:

- Faces are polyhedva
- Empty face \& entire P are called trivial faces)
$\operatorname{dim}=-1$ - else F hourtrivial $\operatorname{dim} P$
$0 \leq \operatorname{dim}(F) \leq \operatorname{dim} P-1$
- $F: \operatorname{dim}(F)=\operatorname{dim}(p)-1$ called facets.
$m E, \ln /(c) \bumpeq$ salad notices

EX: list the 28 faces of the cube

$$
P=\left\{x \in \mathbb{R}^{3}: 0 \leqslant x_{i} \leqslant 1\right\}
$$

$$
p=
$$

Fact: ∞ many valid ineqs, but \# faces finite!

- Face characterization: Any noumpto face of P

$$
A_{i}^{i s}\left\{\begin{array}{ll}
a_{i}^{\top} x=b_{i} & \forall i \in I \\
a_{i}^{\top} x \leq b_{i} & \forall i k I
\end{array}\right\}
$$

$$
\text { for sum set } \frac{1}{s} \leq\{1, \ldots, m\} \text {. }
$$

E.9. cube

- Facet Maximalitey: The facets are the maximal nontrivial faces of a nonempty polyhedron P.
For vertices: just need equalities.
vertices $=$ extreme points. Exercise

Vertex Characterization:
Suppose x^{*} extreme point of P
Then $\exists I$ s.t. x^{*} is
the unique solon to

$$
* a_{i}^{\top} x=b ; \text { for all } i \in I
$$

moreover any $x \in P$ that uniquely solus $*$ is extreme.
eg. simplest $(0,1,0)$ is intersection of 3 constraints

- Vertex minimality: For $\operatorname{rank}(A)=n$, minimal noutrivial faces of polyhedron P are the vertives.
Exercise: if $\operatorname{rank}(A)<n$, novertices?
- Polytopes = comex hulls

If a polyhedron P is bouded then $P=\operatorname{conv}($ Eertreme poonts of $P\}$].
(special case of Krein-Milman theoren: compact comex) sulhsefo $f \mathbb{R}^{n}$ is conv (extremepts).

- Facets Characterize
\square inequalts $a_{i}^{\top} \leqslant b_{i}$ redundant if P unchayed when it's removed.
- I= $:=\left\{j: a_{i}^{\top} x=b_{i} \forall x \in P\right\}$ "equalities'

ロ $I_{<}:=\left\{i: \exists x \in P \quad a_{i}^{\top} x<b_{i}\right\}$.
THEN:
(Sufficiency:) If face $a_{i}^{\top} x \leq b$; for $i \in I<$ is not facet, then $a_{i}^{\top} x \leqslant b$; is redundant.

(Necessity:) If F is facet of P, \exists it $I_{<}$ such that F is induced by

$$
a_{i}^{\top} x=b_{i}
$$

\circ L

- Near vertices = cones over polytopes

Lot v_{0} vertex of P from valid inequality $c^{\top} x \leq m$. Let ε be such that $C^{\top} v^{\prime} \leq m-\varepsilon$
for all other vertices v^{\prime}.
Then

$$
P_{0}=\left\{x \in p: c^{\top} x=m-\varepsilon\right\}
$$

is a polytope \& is bijection
$\left\{P_{0}^{\prime} s \operatorname{dim} k\right.$ faces $\}$
\{p's dimkt faces
contain $\left.V_{0}\right\}$.

- P's "graph" connected: Graph of vertices $\&$ edges of polyhedron P
is always connected.
In particulon: if v^{*} minimum of $c^{\top} x$ over P, v_{0} vertex, $\exists v_{0} \rightarrow v^{*}$ path which decreases objective.

$$
v_{0} \overrightarrow{1} \geqslant 0
$$

bijection: dim face F of P_{0} $\overrightarrow{\text { dim } k+1 \text { face of }}$
$P_{0} P$ containing F
 and V_{0}.

PROOFS
Recall face characterization:
Let $A \in \mathbb{R}^{m \times n}, \quad A=\left[\begin{array}{c}\vdots \\ - \\ \vdots \\ \vdots\end{array}\right]$
Any nonempty face of $P=\{x: A x \leqslant b\}$ is $\left\{\begin{array}{ll}a_{i}^{\top} x=b_{i} & \forall i \in I \\ & a_{i}^{\top} x \leq b_{i}\end{array} \forall i \notin I\right.$,
for some set $I \subseteq\{1, \ldots, m\}$.
Proof of converse: exercise

Proof Consider valid inequality $\alpha^{\top} x \leq b$ giving nonempty face F. $F=\left\{x: a^{\top} x=b\right\} \cap \dot{P}$

- $F=$ optimum solutions to bounded LP
$\max \alpha^{\top} x$
(P) subject to $A x \leqslant b$
- Let y^{*} optimal solution to dual.

$$
y^{*}=\left(y_{1}, \ldots . y_{m}\right)
$$

- Complementary slackness:
optimal solus F are

$$
\left\{x: a_{i}^{\top} x=b_{i} \text { for } i: y_{i}^{*}>0\right\} \text {. }
$$

Thus we can take $I=\left\{:: y_{i}^{*}>0\right\}$.

Ex: - positive orthant $\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0\right\}=0$ has $2^{n}+1$ fares $\quad n$ inequatios

- How many of dim k ? $\left\{x_{i}=0, i \in I\right\}$

For poly topes can abs bound \# faces in terms of \# vertices.
("upper bound theorem"
"Dehn Somerville equations")
Facot maximality

PF: Exercise to prove from face characterization.
Recall vertex characterization.
Let x^{*} extreme point for P.
Then \exists I st. x^{*} is the unique sols to

$$
a_{i}^{\top} x=b_{i} \quad \forall i \in I .
$$

moreover, an g such unique solution $x^{k} \in P$
is extreme is extreme.

Proof: Given extreme point x^{*},

- define $I=\left\{i: a_{i}^{\top} x^{*}=b_{i}\right\}$.
- Note for i\& $I, a_{i}^{\tau} x^{*}<b_{i}$.
- Bay "fares characterization" uniquer defined by

$$
F=\left\{\begin{array}{lll}
(*) & a_{i}^{\top} x=b_{i} & i \in I \\
(* *) & a_{i}^{\top} x \leq b_{i} & i \notin I
\end{array}\right\}=\left\{x^{*}\right\}
$$

- Suppose 3 other sole. \hat{x} to ($*$). (for contradiction)
- Because $a_{i}^{\top} x<b$; for $i \notin I$,

$$
(1-\varepsilon) x^{*}+\varepsilon \hat{x}
$$

still satisfies $(*),(* *)$ for ε small engr

- Contradict F having only one point. D.

Basic Feasible solutions:
For $Q=\{A x=b, x \geqslant 0\}$ can describe extreme points very explicitly.
(every P can be gut in this form).

Corollary of Vertex Thin: Extreme pts of Q as above come from setting

$$
x_{j}=0 \text { for } j \in J
$$

and findin unique solution to $A x=b$ for remain variables.
Can say more: Extreme points of Q as above are the basic feasible solutions (bps), feasible solus obtained as follows: FILED IN LES 7 HANDOUT

- Remove redundant saws from A (

$$
m \begin{aligned}
& n \\
& A
\end{aligned}
$$

- Choose M columns B of A, C,

- Solve $A_{B} X_{B}=0$, set

$$
x_{i}^{*}=\left\{\begin{array}{l}
i \in B \\
\\
\text { else }
\end{array}\right.
$$

$$
\left\{b f_{s}\right\}=\{\text { extreme pis }\} .
$$

Recall vertex minimality If (rank $A=n)$, vertices are minimal nontrivial facet of P.

$$
P=\{x: A x \leq b\}
$$

$$
-\ddot{\vdots}+
$$

Proof: Let F mind face of P.

- Face characterization \Rightarrow II

$$
F=F_{I}=\left\{x: \begin{array}{ll}
u_{i}^{\prime} x-y_{i} & \forall E \perp \\
a_{j}^{\top} x \leqslant b_{i} & \forall j \notin I
\end{array}\right\}
$$

assume no redundant inequalstitesins. and adding an eft to I males F_{I} empty. (b/c else II face $\subset F$).

- Consider two cases:
(a) Only the equalities are need ($a_{j}^{\top} x=b j$
ie. F is exactly redund.

$$
\left\{x: a_{i}^{\top} x=b ; \forall i \in I\right\}
$$

* Claim: $\forall j \notin I$,

$$
a_{j} \in \lim \left(a_{i} \div i \in I\right)_{;}
$$

else $a_{j}^{\top} x=b_{j}^{j+1}$ has solution in F_{ν} contradicting $a_{j}^{\top} x \leq b_{j}$.
($a_{i}^{a} x$ ier dossot deteranime $a_{j}^{\top} \times$ unless $\left.a_{j} \in \lim \left(a_{i}!i+-1\right)\right)$

* Equivalents: submatrix A_{I} w/
rows in I satisfies

hence $\operatorname{rank}\left(A_{I}\right)=\operatorname{rank}(A)=n$.
Thus: $\quad a_{i}^{\top} x=b_{i}$ for $i \in I$ has unique sole, so F is single point, i.e. a vertex.
(b) Some inequality needed:
well show is contradiction.

- $\exists j \notin I, \tilde{x} \omega /$

$$
\begin{aligned}
& a_{i}^{\top} \tilde{x}=b_{i} \quad i \in I, \\
& a_{j}^{\top} \tilde{x}>b_{j}
\end{aligned}
$$

- F nontrivial $\Rightarrow \exists \hat{x} \in F$.

$$
\hat{x} \text { satisfies } \quad \begin{aligned}
& a_{i}^{\top} x=b_{i} \quad i \in I, \\
& a_{j}^{+} \hat{x} \leqslant b_{j}
\end{aligned}
$$

- Consier conver combination

$$
x^{\prime}=\lambda \tilde{x}+(1-\lambda) \hat{x}
$$

let λ belangert So $x^{\prime} \in P$. (EF).

- x 'satirfes one more equaliter
celse could increase λ contradicts minimality of F.

Finally we can show eqniv b/w bounded pobhedva\& conver hulls. (polytopes).

Recall: $P=\{A x \leq b\}$ bourled then $P=\operatorname{comv}\left(X\right.$ theme p ts.of $_{!!}$). ie. P is polyfope.
Poof: Use TOTA

- $x \subseteq P \Rightarrow \operatorname{com}(x) \subseteq P$.
- Assume for contradiction that $\operatorname{com}(x) \subseteq P$.
- Let $\tilde{x} \in P \backslash \operatorname{comv}(x)$.
-Then

$$
\begin{aligned}
& \sum_{v \in X} \lambda_{v v}=\tilde{x} \\
& \sum_{v \in x} \lambda_{v}=1
\end{aligned}
$$

$$
\lambda_{v} \geq 0
$$

has no solution.

- TOTA \Rightarrow
has no soln $\Leftrightarrow \Delta \begin{aligned} \Delta & \\ & =\rightarrow \geqslant \\ & =\rightarrow \text { ? }\end{aligned}$

$$
x^{\tau} y=0, \hbar^{\tau} y<0, y \square 0
$$

has soln. i.e.

$$
\begin{array}{ll}
\widetilde{A}^{\top} & y \\
1 & 1
\end{array}
$$

- Face induced by $c^{\top} x=z^{*}$ nonempty, but contains no vertex.
(because $\# \Rightarrow$ objective is less on \tilde{x} than awry.]
- Contradicts vertex orig minimality!
(applies b / c rank $A=n$; if rank $A<n, p$ not bounded (b / C some solution to $A y=0$.
assume $w / \log 0 \in P \Rightarrow b_{i} \geqslant 0$

